The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 2X+2 1 1 1 1 1 1 1 1 1 X 1 1 1 1 2 1 X X 1 2X 0 1 2 1 0 1 2 X 1 1 0 X 0 X 2X 0 X+2 3X+2 0 2X 3X 3X 0 3X+2 2X+2 X 2X+2 X+2 3X+2 2X 2X X+2 3X 3X+2 X 3X 3X 2X+2 X+2 2X+2 3X X+2 2 3X 3X+2 2 0 2X+2 2X+2 X 3X 3X 2 2X 2X 2X 2 0 X+2 X 2X+2 X 2X 3X+2 2 0 0 X X 0 3X+2 X+2 2X 2 3X+2 3X+2 2 2X+2 2 X X 3X+2 3X X 3X 2X+2 0 2X 2X+2 2X+2 X+2 2X+2 3X+2 2X+2 X+2 2 2 X X+2 2X 2X 2X 2X+2 2X+2 2X+2 3X 2X 3X+2 X X X 2X X X 3X+2 X 3X X 3X 2 0 0 0 2 2X+2 2 2X 2 2 0 2 2X+2 0 0 2X+2 2X 2 2X+2 2X 2 2X 2X 2 0 2X+2 0 2 2X 2X 2X+2 2X 2X+2 2X 2X 2 2 2X 2 2X 2X 0 2X 0 2X 2X+2 2 2X+2 2X 2 2X 2 2 2 2X+2 2 generates a code of length 55 over Z4[X]/(X^2+2) who´s minimum homogenous weight is 50. Homogenous weight enumerator: w(x)=1x^0+104x^50+276x^51+391x^52+412x^53+714x^54+488x^55+678x^56+374x^57+262x^58+164x^59+85x^60+56x^61+47x^62+16x^63+11x^64+6x^65+8x^66+2x^68+1x^86 The gray image is a code over GF(2) with n=440, k=12 and d=200. This code was found by Heurico 1.16 in 0.359 seconds.